UV-C Dose Requirements to Kill Bacteria and Viruses

In an age where hygiene, cleanliness and infection control are more crucial than ever, ultraviolet germicidal irradiation (UVGI) using UV-C light has offers a reliable, chemical-free method to disinfect air, water, and surfaces. UV-C light, typically emitted at a wavelength of 254 nanometers, disrupts the DNA or RNA of microorganisms, rendering them inactive and unable to replicate.

Why UV-C light?

UV-C disinfection offers a host of advantages:

  • Chemical-free: Leaves no residue or toxic byproducts.
  • Broad-spectrum efficacy: Effective against bacteria, viruses, molds, and spores.
  • Rapid action: Microbes can be inactivated in seconds to minutes depending on exposure.
  • Scalable and versatile: Can be used in a range of settings including hospitals, care homes and food processing facilities.
  • Ease of use, low running and maintenance costs.

Scientific basis of UV-C disinfection

The effectiveness of UV-C light is measured in log reductions, representing the percentage of microorganisms eliminated:

  • 1-log = 90% reduction (D90)
  • 2-log = 99% reduction
  • 3-log = 99.9% reduction
  • 4-log = 99.99% reduction
  • 5-log = 99.999% reduction

The dose (or fluence) of UV-C light is measured in joules per square meter (J/m²). Each microorganism has a different sensitivity to UV-C, requiring a specific dose to reach desired log reductions. When looking to target multiple pathogens, you should target the one with the greatest dose requirement to ensure all are covered.

Looking for UV-C disinfection solutions?

We offer a range of UV-C lamps and system for disinfection or air and surfaces. Contact us to discuss your particular requirements or arrange an online or onsite consultation.

UV-C dose requirements for common pathogens

Please note the figures below are provided as a guide, taken from independent research conducted over many years in a range of settings. We recommend that where specific reductions and results are required, testing is carried out to prove and validate the effects of various exposure levels and doses.

MicrobeTypeD90MediaSource
Salmonella enteritidisVeg10 J/m2SurfaceCollins 1971
E. coliVeg55 J/m2SurfaceHollaender 1955
Staphylococcus aureusVeg66 J/m2SurfaceGates 1934
Listeria monocytogenesVeg156 J/m2SurfaceKim 2002

UV-C dose required to inactivate SARS CoV-2 (coronavirus)

At the start of the SARS CoV-2 pandemic, Dr. Anthony Griffiths, Associate Professor of Microbiology at Boston University School of Medicine and his team treated inoculated material with different doses of UV-C radiation coming from a UV-C light source and assessed the inactivation capacity under various conditions. The team applied a dose of 50 J/m2, resulting in a reduction of the SARS-CoV-2 virus of 99%. Based on the data, it was determined that a dose of 220 J/mwill result in a reduction of 99.9999%.

UV-C dose required to inactivate bacteria

MicrobeTypeD90MediaSource
Acinetobacter baumanniiVeg18 J/m2SurfaceRastogi 2007
B. atrophaeus (B. globigii)Sp144 J/m2AirEPA 2006
Bacillius anthracis sporesSp743 J/m2SurfaceKnudson 1986
Bacillus cereus sporesSp408 J/m2SurfaceBenoit 1990
Bacillus megatheriumSp273 J/m2SurfaceHercik 1937
Bacillus subtilisVeg14 J/m2AirNakamura 1987
Bacillus subtilis sporesSp149 J/m2AirKe 2009
Burkholderia cepaciaVeg22 J/m2AirFletcher 2004
Corynebacterium diphtheriaeVeg33 J/m2SurfaceSharp 1939
Escherichia coliVeg55 J/m2SurfaceHollaender 1955
Escherichia coliVeg11 J/m2AirKoller 1939
Francisella tularensisVeg288 J/m2AirBeebe 1959
Haemophilus influenzaeVeg38 J/m2SurfaceMongold 1992
Halobacterium sp. NRC-1Veg25 J/m2SurfaceCrowley 2006
Legionella dumoffiVeg24 J/m2SurfaceKnudson 1985
Legionella bozemaniiVeg15 J/m2SurfaceKnudson 1985
Legionella gormaniVeg26 J/m2SurfaceKnudson 1985
Legionella jordanisVeg11 J/m2SurfaceKnudson 1985
Legionella longbeachVeg11 J/m2SurfaceKnudson 1985
Legionella micdadeiVeg15 J/m2SurfaceKnudson 1985
Legionella oakridgensisVeg22 J/m2SurfaceKnudson 1985
Legionella pneumophilaVeg5 J/m2SurfaceKnudson 1985
Legionella wadsworthiiVeg4 J/m2SurfaceKnudson 1985
Listeria monocytogenesVeg156 J/m2SurfaceKim 2002
Micrococcus candidusVeg61 J/m2SurfaceHollaender 19855
Micrococcus piltonesisVeg81 J/m2SurfaceRentschler 1941
Micrococcus sphaeroidesVeg100 J/m2SurfaceRentschler 1941
Mycobacterium bovis BCGVeg22 J/m2SurfaceCollins 1971
Mycobacterium bovis BCGVeg33 J/m2AirKo 2000
Mycobacterium parafortuitumVeg46 J/m2AirPeccia 2001
Mycobacterium phleiVeg63 J/m2AirRiley 1976
Mycobacterium smegmatisVeg12 J/m2AirGillis 1974
Mycobacterium tuberculosisVeg11 J/m2SurfaceCollins 1971
Mycobacterium tuberculosisVeg5 J/m2AirRiley 1976
Mycoplasma arthritidisVeg7 J/m2SurfaceFurness 1977
Mycoplasma fermentansVeg9 J/m2SurfaceFurness 1977
Mycoplasma hominisVeg7 J/m2SurfaceFurness 1977
Mycoplasma Orale type 1Veg11 J/m2SurfaceFurness 1977
Mycoplasma Orale type 2Veg6 J/m2SurfaceFurness 1977
Mycoplasma pheumoniaeVeg8 J/m2SurfaceFurness 1977
Mycoplasma salivariumVeg11 J/m2SurfaceFurness 1977
Neisseria catarrhalisVeg44 J/m2SurfaceRentschler 1941
Nocardia asteroidesVeg280 J/m2SurfaceChick 1963
Phytomonas tumefaciensVeg44 J/m2SurfaceRentschler 1941
Proteus vulgarisVeg30 J/m2SurfaceRentschler 1941
Pseudomonas aeruginosaVeg55 J/m2SurfaceHollaender 1955
Pseudomonas aeruginosaVeg4 J/m2AirSharp 1940
Pseudomonas fluorescensVeg35 J/m2SurfaceRentschler 1941
Pseudomonas fluorescensVeg3 J/m2Airvan Osdell 2002
Salmonella enteritidisVeg10 J/m2SurfaceCollins 1971
Salmonella typhiVeg21 J/m2SurfaceSharp 1939
Sarcina luteaVeg197 J/m2SurfaceRentschler 1941
Serratia indicaVeg209 J/m2AirHarstad 1954
Serratia marcescensVeg22 J/m2SurfaceSharp 1939
Serratia marcescensVeg115 J/m2AirKo 2000
Shigella paradysenteriaeVeg17 J/m2SurfaceSharp 1939
Spirillum rubrumVeg44 J/m2SurfaceRentschler 1941
Staphylococcus albusVeg33 J/m2SurfaceRentschler 1941
Staphylococcus albus (1)Veg23 J/m2AirRentschler 1942
Staphylococcus albus (2)Veg52 J/m2AirRentschler 1942
Staphylococcus aureusVeg66 J/m2SurfaceGates 1934
Staphylococcus aureusVeg20 J/m2AirNakamura 1987
Staphylococcus epidermisVeg29 J/m2Airvan Osdell 2002
Streptococcus agalactiaeVeg5 J/m2AirLuckiesh 1949
Streptococcus haemolyticusVeg22 J/m2SurfaceSharp 1939
Streptococcus pneumoniaeVeg468 J/m2SurfaceGritz 1990
Streptococcus pyogenesVeg4 J/m2SurfaceLidwell 1950
Streptococcus pyogenesVeg1 J/m2AirLuckiesh 1949
Stroptococcus viridansVeg20 J/m2SurfaceSharp 1939

UV-C dose required to inactivate viruses

MicrobeTypeD90MediaSource
AdenovirusdsDNA59 J/m2AirWalker 2007
Adenovirus type 2dsDNA400 J/m2SurfaceDay 1974
Adenovirus type 40dsDNA300 J/m2SurfaceMeng 1996
Adenovirus type 41dsDNA240 J/m2SurfaceMeng 1996
Bacteriophage MS2dsRNA61 J/m2AirWalker 2007
Bacteriophage MS2dsRNA4 J/m2AirTseng 2005
Coliphage X-174dsDNA4 J/m2AirTseng 2005
Coliphage PRD1dsDNA87 J/m2SurfaceMeng 1996
Coliphage T7dsDNA10 J/m2AirTseng 2005
CoronavirusssRNA3 J/m2AirWalker 2007
CoxsackievirusssRNA21 J/m2AirJensen 1964
Human CytomegalovirusdsDNA658 J/m2SurfaceAlbrecht 1974
Influenza A virusssRNA19 J/m2AirJensen 1964
Newcastle Disease VirusssRNA16 J/m2SurfaceRubin 1959
phage phi 6dsRNA7 J/m2AirTseng 2005
PoliovirusdsRNA44 J/m2SurfaceMa 1994
Poloiovirus type 1dsRNA41 J/m2SurfaceMeng 1996
Rauscher Murine Leukemia v.ssRNA959 J/m2SurfaceStull 1976
Rous Sarcoma virus (RSV)ssRNA200 J/m2SurfaceRubin 1959
Sindbis virusssRNA62 J/m2AirJensen 1964
S. aureus phagessDNA82 J/m2SurfaceGates 1934
Vaccina virusssDNA15 J/m2AirJensen 1964

Free webinar covering UV safety in the workplace

Join us for a free UV safety webinar, designed to help organisations understand their legal obligations and ensure safe use of artificial UV light equipment in the workplace.

View dates and register your place